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INTRODUCTION 
 

Alzheimer’s disease (AD) is a progressive 

neurodegenerative disease leading to dementia, 

typically manifesting as memory disturbance, 

attentional and executive deficits, and visuospatial  

 

and perceptual impairments. It is pathologically 

characterized by the deposition of amyloid-β plaques 

and tau-related neurofibrillary tangles, resulting in loss 

of neurons [1]. Currently, AD is still an irreversible 

condition, and there are no effective medications 

available today. Studies have found that early 
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ABSTRACT 
 

In this paper, we applied a novel method for the detection of Alzheimer’s disease (AD) based on a structural 
magnetic resonance imaging (sMRI) dataset. Specifically, the method involved a new classification algorithm of 
machine learning, named Generalized Split Linearized Bregman Iteration (GSplit LBI). It combines logistic 
regression and structural sparsity regularizations. In the study, 57 AD patients and 47 normal controls (NCs) 
were enrolled. We first extracted the entire brain gray matter volume values of all subjects and then used 
GSplit LBI to build a predictive classification model with a 10-fold full cross-validation method. The model 
accuracy achieved 90.44%. To further verify which voxels in the dataset have greater impact on the prediction 
results, we ranked the weight parameters and obtained the top 6% of the model parameters. To verify the 
generalization of model prediction and the stability of feature selection, we performed a cross-test on the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) and a Chinese dataset and achieved good performances on 
different cohorts. Conclusively, based on the sMRI dataset, our algorithm not only had good performance in a 
local cohort with high accuracy but also had good generalization of model prediction and stability of feature 
selection in different cohorts. 
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diagnosis and administration of drugs can delay the 

progression of the disease. However, it is difficult to 

diagnose AD in the early stage in clinical practice. 

Thus, quantitative analysis based on imaging can 

possibly provide a potential method to make an early 

diagnosis of AD.  

 

In the past several years, many neuroimaging studies 

have been performed to develop different biomarkers 

for the early diagnosis of AD at the individual level  

[2, 3]. Among various neuroimaging modalities, 

structural magnetic resonance imaging (sMRI) is most 

commonly used, possibly due to its wide operability and 

objectivity. AD pathological changes are mostly 

involved in the hippocampus, medial temporal gyrus, 

posterior cingulate gyrus, as well as precuneus [4–7]. 

Progressive brain atrophy due to neuropathology is 

often measured using sMRI and is taken as a valuable 

imaging biomarker for early individual diagnosis of AD 

[8, 9]. Many neuroimaging studies have used region-of-

interest (ROI)-based analysis to explore the subtle local 

atrophy caused by AD, thus proposing imaging 

classifiers to distinguish AD from normal control (NC) 

individuals [10, 11]. Such studies relied solely on prior 

knowledge to guide the selection of ROI and features, 

thus ignoring the structural changes of the entire brain 

and the microstructural abnormalities in the anatomy, 

which made it difficult and challenging to establish 

reliable markers for diagnosing AD in the early stages. 

The potential considerations of classification in clinical 

practice have largely driven the development of 

machine learning, which can provide a systematic 

approach to developing complex, automated, and 

objective classification frameworks for analyzing high-

dimensional data across the whole brain. Typically, the 

classification framework includes feature extraction and 

classification algorithms to build predictive models and 

develop imaging markers to perform classification with 

high sensitivity and specificity. Applying different 

classification algorithms on the extracted neuroimaging 

features for AD/mild cognitive impairment (MCI) 

showed great advantages for detecting AD at the 

prodromal stages, even before clinical manifestation 

[12, 13]. 

 

For AD classification, machine learning has attracted 

increasing attention by using the multimodal quantify 

patterns of atrophy together with different algorithms in 

recent years. For feature extraction, brain atrophy was 

most often quantified via tissue density maps, volume 

maps, cortical thickness measures, and geometric 

measures of the hippocampus from sMRI. However, 

several different classification algorithms have been 

proposed and applied for AD classification and have 

achieved promising results. Support vector machine 

(SVM) is the most popular algorithm for AD 

classification [14–18]. SVM can extract high-

dimensional, informative features from MRI to build 

predictive classification models, resulting in the 

automation of clinical diagnosis. Multi-kernel learning, 

which is an extension of ordinary kernel-based 

classification algorithms, has also been increasingly 

used in AD classification [19–21]. Other less common 

classification algorithms used in AD research include 

linear discriminant analysis (LDA) [22, 23], orthogonal 

partial least square regression [24], random forest [25], 

regularization-based methods [26], voting-based 

ensemble methods [27], kernel SVM decision-tree [28], 

and spatially augmented linear programming boosting 

method (LPBM) [29]. Although several classification 

algorithms have been applied in AD, there were still 

some issues to be noted. For example, the algorithms 

with a general loss and L2 penalty, which could 

automatically select or extract classification-related 

features, were poorly interpretable or easy to overfit. 

Some other algorithms, such as L1 regularization-based 

methods, which had structural sparsity and 

interpretability, were inclined to ignore the effect of 

procedural bias on the classification. Moreover, in our 

recent study of AD, we found that the preprocessing 

steps could introduce one type of feature called 

procedural bias [30], referring to mistakenly enlarged 

gray matter volume during registration and 

segmentation in the preprocessing steps. Therefore, for 

neuroimaging-based AD classification, it has attracted 

increasing attention to derive a more precise 

classification algorithm that could take both lesion 

features and procedural bias into consideration and 

make better predictions on an individual basis. 

 

Here, to achieve accurate classification of AD, we 

proposed a new classification algorithm in our 

preliminary study [30], named the Generalized Split 

Linearized Bregman Iteration (GSplit LBI) method, 

which combines logistic regression and structural 

sparsity regularizations to verify its capacity in a 

Chinese cohort. The model had a sparsity enforcement 

based on the idea of variable splitting; therefore, it can 

effectively leverage both procedural bias and lesion 

features into prediction, and it has a better 

regularization path and interpretability. By using this 

algorithm on the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) dataset in our previous study, the 

advantages of GSplit LBI were verified by the improved 

stability of selected lesion features and better 

classification results when compared with other 

algorithms, such as Maximum uncertainty Linear 

Discriminant Analysis (MLDA), SVM, Lasso, 

Graphnet, Elastic Net, Total Variation (TV + l1) and 

Nonnegative Generalized Fused Lasso (n2GFL). 

However, further analysis of the GSplit LBI in AD was 

not performed; therefore, the key brain regions that 
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determine the classification of AD and its association 

with clinical variables remain unknown. Most 

importantly, the generalization and stability of the 

GSplit LBI model are not very clear. Furthermore, other 

than the ADNI dataset, we do not know the prediction 

capacity of the model in other cohorts. 

 

In the present study, we aim to use gray matter (GM) 

voxels and the GSplit LBI algorithm to distinguish AD 

from NC at the individual level in a Chinese cohort. We 

hypothesized that this classification was driven by a 

distributed pattern of GM voxel alterations that were 

involved in the temporal lobe, such as the entorhinal 

cortex, hippocampus, parahippocampal gyrus and other 

limbic system components. Furthermore, because 

structural changes might be affected in some specific 

cognitive-related regions early in the disease course, we 

expected that atrophy of specific regions could 

accurately describe and track disease progression, 

which could be applied as a valuable imaging biomarker 

for the early diagnosis of AD. In addition, we further 

extracted these specific regions and made correlations 

with cognitive performance as measured by mini-mental 

state examination (MMSE). Finally, we performed a 

cross-test on the ADNI dataset and our in-house dataset 

using the model parameters trained from our in-house 

dataset and the ADNI dataset, respectively. We 

speculated that the GSplit LBI algorithm not only had 

good performance in a local cohort but also had 

generalization of model prediction and stability of 

feature selection in different cohorts. 

 

RESULTS 
 

Demographic and neuropsychological tests  

 

The demographic characteristics are shown in Table 1. 

There were no significant differences of gender, age and 

education between the AD and NC groups (both P > 

0.01). However, the AD group exhibited significantly 

lower MMSE than the NC group (P < 0.0001).  

 

Classification results for an in-house test dataset 
 

After the 10-fold cross-validation was completed, we 

performed statistical analyses on the results of our 

model between 57 AD patients and 47 NCs and 

reported the results of each 10-fold cross-validation in 

Supplementary Table 1. The overall accuracy, which is 

the ratio of the correct classification number of AD/NC 

samples to the total number of AD/NC samples, was 

90.44%. In ten cross-validations, the maximum 

accuracy was 91.36%, and the minimum accuracy was 

89.55%. Moreover, the average of sensitivity was 

91.17%, ranging from 89.67% to 91.67%, and the 

average of specificity was 89.50%, ranging from 

87.00% to 92.00%. The area under the curve (AUC) 

value of our AD/NC classification model could reach 

0.9090, and the receiver operating characteristic (ROC) 

curve is shown in Figure 1. 

 

Brain areas involved in the classification analysis 

 

To verify which voxels in the data have greater impacts 

on the prediction results, we sorted the weight 

parameters in main parameter β from large to small and 

performed classification experiments with the largest 

top n (ranging from 1 to 2527; 2527 is the number of all 

input features) weight parameters in turn. We then 

computed the relationship between the prediction 

accuracy and the weight parameters used in 

experiments. As shown in Figure 2, at the beginning of 

the curve, with the increase of the weight number, the 

prediction accuracy increased gradually. However, 

when the weight number reached 163 (about the top 

6%), the prediction accuracy attained its maximum and 

remained unchanged after that. This meant that adding 

more weight parameters would only produce 

information redundancy and could not improve 

performance. Therefore, we defined the voxels 

corresponding to these top 6% weight parameters as key 

voxels. The weight distribution map of these voxels is 

shown in Supplementary Figure 1. The brain regions 

with the largest weight ratio of our in-house dataset are 

shown in Figure 3A, and their information is reported in 

Table 2, including lateral temporal lobe, entorhinal 

cortex, the hippocampus, parahippocampal gyrus and 

the limbic system, motor cortex area (M1), cerebellum 

crus2 and thalamus.  

 

Relationship between structural changes and 

cognitive behaviors 
 

In the AD group, positive correlations were found 

between the MMSE scores and the structural changes of 

several regions obtained from GSplit LBI (i.e., bilateral 

middle temporal gyrus (MTG), bilateral angular gyrus 

(ANG), bilateral supramarginal gyrus (SMG), left 

inferior temporal gyrus (ITG), right superior temporal 

gyrus (STG), right precuneus (PCUN), right calcarine 

fissure and surrounding cortex (CAL), and left thalamus 

(THA)) (P < 0.05, with age, gender and education level 

as covariates). The details are shown in Figure 4.  

 

Cross-test results on the ADNI dataset and in-house 

dataset 
 

In cross-test, using the Chinese model trained from our 

in-house dataset, the accuracy, specificity and 

sensitivity of the prediction results on the ADNI dataset 

reached 86.36%, 80.30% and 90.00%, respectively. 

Simultaneously, using the ADNI model, the accuracy, 



 

www.aging-us.com  6209 AGING 

Table 1. Characteristics of AD patients and normal controls. 

Characteristics AD Contrlos P value 

N (M/F) 57 (25/32) 47 (23/24) 0.61a 

Age, years 65.21±9.14 63.94±8.06 0.46b 

Education, years 10.56±6.47 11.36±3.59 0.43b 

MMSE 14.02±5.90 26.49±4.02 <0.0001b 

CDR 1.43±0.54(1-3) 0 - 

MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; plus–minus values are means±S.D. 
a The P value for gender distribution in the two groups was obtained by Chi-square test. 
b The P values were obtained by a two-sample two-tailed t-test. 
 

specificity and sensitivity of the prediction results on 

our in-house dataset also reached 84.26%, 78.95% and 

91.49%, respectively. The ROC curve of the cross-test 

is shown in Figure 5, and the AUC values of these two 

tests were 0.92 and 0.91, respectively. When using the 

model trained from our in-house dataset on the ADNI 

dataset, the brain regions with the largest weight ratios 

on the classification of AD patients and NCs are shown 

in Figure 3B.  

 

DISCUSSION 
 

Effective and accurate AD diagnosis is critical for early 

treatment. Therefore, many researchers have devoted 

their efforts to develop a computer-aided system that 

can diagnose AD in the early stages and on an 

individual basis [2, 3]. The present study demonstrated 

that patients with AD could be distinguished from NCs 

using a classified model based on GM voxels and the 

GSplit LBI algorithm, with good to excellent accuracy. 

This classification was driven by a distributed pattern of  

GM voxel alterations, involving the lateral temporal 

lobe, entorhinal cortex, hippocampus, parahippocampal 

gyrus, limbic system, M1, cerebellum crus2 and 

thalamus. In addition, we found that atrophy of several 

specific regions significantly correlated with cognitive 

performances as measured by MMSE. Finally, we 

performed a cross-test to verify the generalization of the 

 

 
 

Figure 1. Receiver Operating Characteristic curve of the model prediction results, The AUC value of our AD/NC classification 
model is 0.9090 and 95% confidence interval is 0.8937-0.9242 (gray area in the graph). 
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Figure 2. The relationship between the predicted results and the number of weights. The horizontal axis represents the largest 
top n weight parameters, the longitudinal axis represents the prediction accuracy under these parameters. At the beginning of the curve, 
with the increase of the weight number, the prediction accuracy increases gradually. However, when the largest top parameters number 
reaches 163 (about the top 6%), the prediction accuracy has the maximum and remains unchanged after that. 

 

 
 

Figure 3. Brain region weight map based on AAL116 template, (A) represents the brain regions that have the greatest impact on the 
classification between AD patients and NCs when using the model parameters of this experiment on our in-house dataset, (B) represents the 
brain regions that have the greatest impact on the classification between AD patients and NCs. The weight value of each brain region is based 
on the average of the weight values in the brain region. The color bar represents the average weight value in each brain region, the larger the 
weight value of the model, the warmer the color in the graph. 
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Table 2. The brain regions that have the greatest impact on the classification between AD and NC.  

Brain region 
AAL 

index 
Volume(mm3) 

Talairach Weight 

(%) X(mm) Y(mm) Z(mm) 

Left precentral gyrus 1 28174 -38.65 -5.68 50.94 13.25 

Left middle temporal gyrus 85 39353 -55.52 -33.80 -2.20 8.77 

Right middle frontal gyrus 8 40374 37.59 33.06 34.04 4.80 

Left middle frontal gyrus 7 38722 -33.43 32.73 35.46 4.80 

Right median cingulate and paracingulate 

gyri  
34 17442 8.02 -8.83 39.79 4.70 

Right insula 30 14128 39.02 6.25 2.08 4.34 

Left inferior temporal gyrus 89 25647 -49.77 -28.05 -23.17 2.83 

Left insula 29 15025 -35.13 6.65 3.44 2.72 

Left superior frontal gyrus, dorsolateral 3 28915 -18.45 34.81 42.20 2.68 

Right hippocampus 38 7606 29.23 -19.78 -10.33 2.63 

Right supramarginal gyrus 64 15770 57.61 -31.50 34.48 2.50 

Right superior temporal gyrus 82 25258 58.15 -21.78 -6.80 2.45 

Right angular gyrus 66 14009 45.51 -59.98 38.63 2.40 

Right middle temporal gyrus 86 35484 57.47 -37.23 -1.47 2.39 

Right parahippocampal gyrus 40 9028 25.38 -15.15 -20.47 2.37 

Right inferior frontal gyrus, orbital part 16 13747 41.22 32.23 -11.91 2.36 

Right precentral gyrus 2 27058 41.37 -8.21 52.09 2.20 

Left calcarine fissure and surrounding cortex 43 18157 -7.14 -78.67 6.44 2.03 

Right precuneus 68 26083 9.98 -56.05 43.77 1.74 

Left median cingulate and paracingulate gyri 33 15512 -5.48 -14.92 41.57 1.73 

Right Calcarine fissure and surrounding 

cortex 
44 14885 15.99 -73.15 9.40 1.63 

Right cerebellum crus2 94 17038 42.12 -69.97 -45.75 1.59 

Left Hippocampus 37 7469 -25.03 -20.74 -10.13 1.53 

Left olfactory cortex 21 2262 -8.06 15.05 -11.46 1.50 

Left lingual gyrus 47 16932 -14.62 -67.56 -4.63 1.40 

Left supramarginal gyrus 63 9907 -55.79 -33.64 30.45 1.31 

Right middle frontal gyrus, orbital part 10 8057 33.18 52.59 -10.73 1.27 

Left angular gyrus 65 9313 -44.14 -60.82 35.59 1.15 

Left precuneus 67 28358 -7.24 -56.07 48.01 1.09 

Left caudate nucleus 71 7682 -11.46 11.00 9.24 1.08 

Left temporal pole: superior temporal gyrus 83 10228 -39.88 15.14 -20.18 0.96 

Left thalamus 77 8700 -10.85 -17.56 7.98 0.88 

       
These brain regions, indexes and volumes are based on AAL116 templates, the value of weight represents the weight ratio of 
this brain region. 
 

model prediction and stability of feature selection in the 

classification. 

 

Advantages of GSplit LBI for AD prediction  
 

Multiple GM microstructural abnormalities in AD have 

been reported in previous studies, which have enabled 

the discrimination of AD from NC [4–7, 10, 31–33]. 

However, these studies only reported group-level 

differences of various brain structures and did not 

consider evaluations of single subjects [34]. Here, we 

used GSplit LBI to examine whether the GM 

microstructural abnormalities could be used to 

discriminate between AD patients and NCs at the 

individual level. In voxel-based neuroimage analysis, 

lesion features have been the main focus in disease 

prediction due to their interpretability with respect to 

the related diseases. However, the “Procedural Bias”, 

which could be leveraged to improve classification 

accuracy, was introduced during the preprocessing  
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steps [35]. Among most existing models, the models 

with a general loss and L2 penalty are poorly 

interpretable and are easy to overfit. These kinds of 

models automatically select or extract features that are 

strongly related to classification according to the 

principle of minimizing classification errors. Other 

kinds of models, such as L1 regularization-based 

methods, have structural sparsity and interpretability, 

but it is easy to ignore the effect of procedural bias on 

AD/NC classification. In the preliminary study of our 

team members [30], empirical experiments were 

evaluated on the ADNI dataset. The advantage of 

GSplit LBI is verified by the improved stability of 

selected lesion features and better classification results 

when compared with other models, such as MLDA, 

SVM, Lasso, Graphnet, Elastic Net, TV+l1 and n2GFL. 

In the present study, we used GSplit LBI to distinguish 

AD from NC at the individual level in a Chinese cohort, 

and the average accuracy, sensitivity and specificity of 

this classifier reached 90.44%, 91.17% and 89.50%, 

respectively. The misclassified cases are mainly 

distributed in cases with low clinical dementia rating 

(CDR) scores. This is because the higher the CDR 

scores, the heavier the dementia, the easier it is to 

classify. Conversely, the lower the CDR scores, the 

lighter the dementia, the easier it is to classify errors. In 

addition, the AUC value of our AD/NC classification 

model reached 0.9, improved the stability of selected 

lesion features and led to better classification results. 

Moreover, the ROC curve shows that our model is 

highly sensitive and specific. 

 

Brain areas involved in the classification analysis 
 

In the present study, the discrimination was based not 

only on atrophy of the lateral temporal lobe, entorhinal 

cortex, the hippocampus, parahippocampal gyrus and 

limbic system but also on regions of M1, cerebellum 

crus2 and thalamus, which are not traditionally 

implicated in AD. This demonstrated the capacity of 

GSplit LBI to detect subtle and distributed GM 

alterations. Previous neuroimaging studies in AD have 

revealed alterations in the lateral temporal lobe, 

entorhinal cortex, hippocampus and limbic system [4–7, 

10, 31–33], reflecting different disease stages and 

predicting the progression from MCI to AD [8]. In 

addition, AD patients accumulated abnormal proteins 

(Aβ and tau) in the form of amyloid plaques and 

neurofibrillary tangles, eventually resulting in loss of 

neurons in these areas [8, 36]. Alterations within these 

areas might explain memory problems, including 

difficulties in word finding and thinking processes,

 

 
 

Figure 4. Scatterplot of mean voxels of the bilateral MTG, bilateral ANG, bilateral SMG, left ITG, right STG, right PCUN, right 
CAL and left THA plotted against MMSE scores (p<0.05, with age, gender and education level as covariates). MTG, middle 
temporal gyrus; ANG, angular gyrus; SMG, supramarginal gyrus; ITG, inferior temporal gyrus; STG, superior temporal gyrus; PCUN, precuneus; 
CAL, calcarine fissure and surrounding cortex; THA, thalamus.  
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abilities to reason, making judgments, communication 

and dealing with daily activities, which are the most 

common symptoms in AD [37, 38]. Consistent with 

these previous structural studies, our findings of the 

high discriminative values on the lateral temporal lobe, 

entorhinal cortex, hippocampus and limbic system 

provided new evidence that microstructural 

abnormalities within these areas were critically occurred 

in AD. 

 

Except for the common GM atrophy areas, we also 

found that cerebellum crus2, M1 and thalamus 

contributed to the identification of AD patients. This 

result was consistent with other AD-related studies, 

which were also involved in cerebellar subregions. 

For instance, GM atrophy of the cerebellum has been 

detected in AD in several neuroimaging studies [39, 

40]. Furthermore, AD pathological changes have now 

been revealed in the cerebellum, including deposits of 

amyloid-b plaques, neurofibrillary tangles, and 

increased microglia [41–43]. As the core region, the 

cerebellum has efferent and afferent fibers between 

the vermis, hypothalamus and limbic system [44]; 

thus, the alteration of the cerebellum might reflect 

abnormal multimodal functions. In our study, we also 

found that M1 contributed to the identification of AD 

from NC. In previous studies, some task-related 

functional magnetic resonance imaging (fMRI) 

studies have demonstrated reduced activation in the 

premotor cortex in AD patients when performing 

motor-related tasks [45, 46]. In addition, one resting 

state fMRI (rs-fMRI) study reported the significant 

functional abnormality of sensorimotor (SMN) cortex 

in AD patients [47]. In conjunction with the previous 

reports and our findings, we speculated that AD 

patients might present subtle motor impairment 

caused by the atrophy and dysfunction of the 

sensorimotor cortex. In the present study, we found 

that thalamus atrophy contributed to the identification 

of AD patients, which was consistent with several AD 

related studies. Reduction of thalamic volume was 

typically observed in some cases of amnestic MCI 

[48–51]. In 2010, de Oliveira performed a longitudinal 

analysis of thalamic tissue texture, finding a stepwise 

decline in thalamic status going from controls to 

amnestic MCI and AD cases [52]. Likewise, thalamic 

volume was found to be correlated with cognitive 

performance in MCI patients through MRI-based 

measurements [50, 51]. Furthermore, reduced 

thalamic volume was found in AD cases when 

compared to other non-dementing individuals who 

reported memory lapses [53], with thalamic volume 

again correlating with the decline of global cognitive 

performances.

 

 
 

Figure 5. Receiver Operating Characteristic curve of the cross-test results. The AUC value of cross-test results on ADNI dataset and 
in-house dataset are 0.92 and 0.91 respectively. 
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Relationship between structural changes and 

cognitive behaviors 

 

In addition, our study found a close relationship 

between cognitive impairment (MMSE scores) and 

mean voxels of several regions obtained from GSplit 

LBI in AD patients, including bilateral MTG, bilateral 

ANG, bilateral SMG, left ITG, right STG, right PCUN, 

right CAL and left THA, suggesting that structural 

changes in these regions could be used as imaging 

markers for tracking disease progression. Among these 

brain regions, the left MTG and left ITG account for a 

large weight on the classification between AD patients 

and NCs of GSplit LBI, further verifying the 

generalization of this model prediction and the stability 

of feature selection. 

 

Reproducibility and Stability of GSplit LBI in 

different cohorts   
 

In the cross-test on our in-house dataset and the public 

ADNI dataset, whether using the Chinese model or the 

ADNI model, we successfully achieved high accuracy, 

sensitivity and specificity. In addition, the AUC values 

of these two tests were 0.92 and 0.91 respectively, 

indicating that our GSplit LBI algorithm not only has 

good performance in a local cohort but also has 

generalization of model prediction in different cohorts. 

Moreover, during the cross-test on the ADNI dataset 

and our in-house dataset, when using the Chinese 

model, the brain regions that had the greatest impact on 

the classification between AD patients and NCs were 

mainly involved in the lateral temporal lobe, entorhinal 

cortex, hippocampus and limbic system and cerebellum 

crus2, which were highly consistent with the results 

when using the model parameters of this experiment on 

our in-house dataset, further suggesting the good 

reproducibility and stability of feature selection of 

GSplit LBI. 

 

Future considerations 

 

Several issues should be considered. First, these results 

were based on a relatively small sample size, although it 

provided preliminary support for the potential of GSplit 

LBI as a diagnostic aid for AD. In the future, large 

samples might be collected to confirm the results. 

Second, to explore whether the application of GSplit 

LBI could discriminate AD patients in different stages, 

future studies will add more samples of early stages of 

AD patients, such as MCI, as well as ApoE 4 carriers. 

In fact, in some previous studies [54–56], the author 

used different machine learning algorithms to classify 

stable MCI (sMCI) and progressive MCI (pMCI) in the 

ADNI dataset and achieved good results. We are 

currently collecting MCI patients and are performing 

follow-up. When the sample size is sufficient, we intend 

to test the GSplit LBI algorithm's classification effect on 

sMCI and pMCI in the in-house and ADNI datasets in 

future research. Third, considering the time complexity 

and space complexity of the algorithm, we currently 

only perform experiments on coarse scale voxels 8x8x8 

mm3 in size. In the future, some finer scale voxels will 

be extracted and other faster optimization methods will 

be introduced to our experiments. Finally, in this study, 

we only focus on the structural changes in early AD; 

future work will combine multimodal neuroimaging 

findings, such as structural, functional and perfusion 

MRI, to examine whether this combination analysis 

could lead to higher levels of diagnostic accuracy. 

 

CONCLUSIONS 
 

In summary, the present study revealed special patterns 

of GM abnormalities in patients with AD. By using the 

GSplit LBI algorithm, which has been proven to have 

good generalization, these GM abnormalities can be 

applied to accurately differentiate AD patients and NCs 

at the level of the individual.  

 

MATERIALS AND METHODS 
 

Participants  
 

A total of 104 right-handed subjects participated in this 

study after providing written informed consent, 

including 57 patients with AD and 47 NCs. This study 

was carried out in accordance with the 

recommendations of the Medical Research Ethics 

Committee of Xuanwu Hospital. All subjects provided 

written informed consent in accordance with the 

Declaration of Helsinki. The AD subjects were recruited 

from patients who had consulted the memory clinic at 

Xuanwu Hospital for memory complaints. The NCs 

were recruited from the local community.  

 

All participants underwent complete physical and 

neurological examinations, standard laboratory  

tests and neuropsychological assessments. The 

neuropsychological examinations included MMSE and 

CDR. The AD patients fulfilled the new research 

criteria for possible or probable AD [57, 58]. The  

new criteria emphasized the clinical history, 

neuropsychological assessment, sMRI, positron 

emission tomography (PET), and cerebrospinal fluid 

(CSF) examinations. Based on the new criteria, we 

carefully evaluated our study samples and confirmed 

each patient as AD. Among the 57 AD patients, 33 

patients had a CDR [59] score of 1 and were thus 

assigned to a mild AD category. Additionally, 24 

patients had a CDR of 2 or 3, suggesting moderate or 

severe AD categories. 
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The NCs met the following criteria: a) no neurological 

or psychiatric disorders, such as stroke, depression and 

epilepsy; b) no neurological deficiencies, such as visual 

or hearing loss; c) no abnormal findings, such as 

infarctions or focal lesions, in conventional brain MRI; 

d) no cognitive complaints; and e) CDR score of 0. 

 

Participants with contraindications for MRI, such as 

pacemaker, cardiac defibrillator, implanted material 

with electric or magnetic systems, vascular clips or 

mechanical heart valve, cochlear implant or 

claustrophobia were excluded. In addition, patients with 

a history of stroke, psychiatric diseases, drug abuse, 

severe hypertension, systematic diseases and intellectual 

disability were excluded. 

 

At last, we intend to briefly explain why we chose only 

right-handed subjects. First, the ratio of left-handed and 

right-handed people in the world is about 3:17. No 

matter in AD or normal people, samples of right-handed 

people are easier to collect. Indeed, most of the patients 

we collected were right-handed. In order to match the 

AD group, we selected the normal group with right-

handed. Second, the size of the brain is different 

between the left-handed and right-handed people. 

Compared with the left-handed people, the right-handed 

people have smaller brain [60]. Therefore, it is 

necessary to consider the hand when quantifying the 

variability among individuals. Previous studies [61, 62] 

have consistently shown that people with smaller brain 

have a relatively higher percentage of gray matter, 

which can be used in most tissues to process local 

information. In this study, we focused on gray matter 

voxels, so only the right-handed subjects were selected.  

 

MRI acquisition protocol  
 

MRI data acquisition was performed on a SIEMENS 

verio 3-Tesla scanner (Siemens, Erlangen, Germany). 

The subjects were instructed to hold still, keep their 

eyes closed and think of nothing in particular. 3D T1-

weighted magnetization-prepared rapid gradient echo 

(MPRAGE) sagittal images were obtained with the 

following parameters: TR/TE/TI/FA = 1900 ms/2.2 

ms/900 ms/9°, image matrix = 256×256, slice number = 

176, thickness = 1 mm.  

 

Preprocessing of structural MRI data 

 

Preprocessing of the MRI data was carried out using 

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm) and 

the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm). 

First, all 3D T1-weighted images were corrected for the 

bias field with regard to homogeneity in the VBM8 

toolbox. Second, the corrected images were normalized 

and then segmented into GM, white matter (WM), and 

cerebrospinal fluid (CSF) components. Only GM 

components were considered in the current study. The 

normalization method we used was DARTEL [63], and 

the template we selected was the default DARTEL 

standard template. In the present preprocessing of 

structural MRI data, images were not smoothed. When 

no smoothing is employed, the sensitivity is increased. 

In addition, our model added the clustering constraints, 

which has its own denoising properties. After this 

processing, the total number of voxels is 121x145x121, 

and the voxel size is 1.5x1.5x1.5 mm3. Third, a 

downsampling processing was used to change the voxel 

size to 8x8x8 mm3 and the number of voxels is 

24x28x24. Finally, a total number of 2,527 voxels with 

average values in the GM population template greater 

than 0.1 was extracted from the processed images and 

served as the input features. 

 

GSplit LBI-based classifier 
 

To achieve accurate classification of AD patients and 

NCs, we adopted the GSplit LBI method, combining 

logistic regression and sparse regularization of 

structure, and used the generalized image descent 

method to optimize the parameters of such binary 

classification problems. The model loss function was 

defined as follows: 
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β is the main parameters of the model, γ is sparse 

constraint parameter for β, σ(·) is sigmoid function, and 

ν is a hyperparameter to balance loss term and 

regularization term. To obtain a better regularization 

path, we adopted the idea of variable splitting and 

introduced an additional sparse parameter γ in the 

regularization parameter. The structural sparsity of the 

model can be satisfied by controlling the square of 2-

norms of sparse γ and Dβ. The goal of optimization is to 

minimize this loss function based on training set in each 

iteration. For more detail of Split LBI, please refer to 

the previous study [30].  

 

Design of classification experiments 
 

To make full use of the available data, a 10-fold full 

cross-validation method was used to train our model. 

In each cross-validation step, to ensure that all data 

were involved in the training and validation process, 

the dataset was randomly divided into ten subsets, nine 

http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de/vbm
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of which were used to train the model in turn; after 

that, the trained model was used to predict the results 

on the remaining subset. After all the subsets had been 

predicted, we combined the results of the ten subsets 

and got the prediction results for the entire dataset, 

shown in Figure 6. We then calculated the model’s 

accuracy, sensitivity, specificity and other indicators 

on the results. We repeated this process 10 times and 

calculated the mean value and 95% CI range of these 

experimental results. In addition, the ROC analysis, 

which is a plot of the fraction of true-positive test 

results (sensitivity) versus the fraction of false-positive 

test results (1-specificity), was plotted after these 

experiments. Finally, the AUC was calculated to 

evaluate the model’s classification performance of AD 

patients and NCs, and the mean and 95% CI of the 

ROC curve were used to evaluate the stability of the 

model. 

 

Brain area analysis in the classification 

 

We carried out a sensitivity analysis of our 

classification model by analyzing which parts of the 

gray matter voxels have greater impacts on the 

classification between AD patients and NCs. In this 

analysis, we take the parameters corresponding to each 

voxel in main parameter β as its contribution to 

classification. The weight parameters in parameter β 

was sorted from large to small and then performed the 

classification experiments with the largest top n (range 

from 1 to 2527) weight parameters in turn. The 

relationship between the prediction accuracy and the 

number of weight parameters used in the prediction 

was then recorded in a chart. When the accuracy 

reached the maximum and remained unchanged, we 

obtained all the key voxels that affected the prediction 

results. 

 

In addition, we constructed a brain region weight map 

based on the Automated Anatomical Labeling (AAL) 

[64] atlas using the following steps. First, we mapped 

the weight parameters to their corresponding voxels on 

a DARTEL template and obtained a coarse weight 

distribution map with voxel size 8x8x8 mm3. Second, 

the coarse weight distribution map was transformed to a 

finer weight distribution map with voxel size 1x1x1 

mm3 by the nearest-neighbor interpolation. This finer 

weight distribution map had the same dimensions as the 

AAL template. Third, we mapped the finer weight 

distribution map to the AAL template by multiplying 

the corresponding elements and calculated the sum of 

weight values in each brain region. These values were 

defined as the weight value of each brain region. 

Finally, according to the weight value of each brain 

region in AAL, we constructed a brain region weight 

map and calculated the relative weight ratio of each 

brain region. 

 

Correlation analysis  
 

To explore the relationships between cognitive 

impairment (MMSE scores) and mean voxels of several 

regions obtained from GSplit LBI in AD patients, a 

partial correlation analysis was performed, with age, 

gender and education being used as nuisance covariates 

(SPSS20, P < 0.05). 

 

 
 

Figure 6. 10-fold cross-validation flow chart. In each cross-validation step, the dataset with 57 AD samples and 47 NC 
samples is divided into ten subsets, nine of which are used as training set and the rest as test set. In the training step, we use 
the training set training GSplit LBI model. In the test step, we use the trained model to predict the test set. Finally, the results of ten folds are 
stacked together as the results of this 10-fold cross-validation step.  
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Reproducibility and Stability analysis 
 

To verify the generalization of model prediction and the 

stability of feature selection, we performed a cross-test on 

our in-house dataset and the public ADNI dataset. We 

used the model parameters trained from this experiment 

to test the ADNI dataset (to facilitate the reference later, 

here we name it the Chinese model); we also used the 

model parameters trained from the ADNI dataset of our 

previous work [30] to test the current dataset (to facilitate 

the reference later, here we name it the ADNI model).  

 

In this cross-test experiment, we used the same ADNI 

subjects as our previous work [30] In the ADNI dataset, 

all subjects are divided into 1.5 Tesla and 3.0 Tesla MRI 

scan datasets. For comparison, we chose the 3.0T ADNI 

dataset in our experiment, which contains a total of 176 

subjects (66 AD patients and 110 NCs) with ages ranging 

from 55-90 years old. The average educational levels of 

AD and NC are 15.59 and 16.65 respectively; 

meanwhile, the average of MMSE scores for AD and NC 

are 23.11 and 28.93, respectively. Subject IDs are shown 

in the Supplemental material in our previous paper [30].  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Weight distribution map to classification between AD patients and NCs which is reconstructed by 
combining voxel information that is entered into the model and top 6% of the model parameters. The color bar represents the 
weight value form GSplit LBI model, the larger the weight value of the model, the warmer the color in the graph. 
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Supplementary Tables 
 

Supplementary Table 1. Performance (accuracy, sensitivity, specificity)  
of ten experiments, each experiment is a ten-fold cross-validation. 

 accuracy sensitivity specificity 

1st 90.45% 91.67% 88.50% 

2nd 89.55% 91.00% 87.50% 

3rd 91.36% 91.67% 92.00% 

4th 90.45% 91.67% 90.00% 

5th 90.45% 91.00% 89.50% 

6th 90.55% 91.00% 89.50% 

7th 89.55% 91.33% 87.00% 

8th 90.45% 89.67% 91.50% 
9th 91.36% 91.33% 91.00% 

10th 90.27% 91.33% 88.50% 

average 90.44% 91.17% 89.50% 

 

Supplementary Table 2. In previous study, the GSplit LBI-based classifier had been compared with other classifiers 
including MLDA, SVM, Lasso, Graphnet, Elastic Net, TV+l1 and n2GFL and obtained better results than other models 
on ADNI dataset.  

 SVM Lasso Elastic Net MLDA Graphnet TV+l1 n2GFL GSplit LBI 

ADNI 87.50% 87.50% 89.2% 86.93% 88.64% 87.50% 87.50% 90.91% 

In-house  87.20% 87.20% 89.50% - - - - 90.44% 

In this study, some comparative experiments including SVM, Lasso and Elastic Net also have been done to prove the 
performance of the GSplit LBI-based model on our in-house dataset. The result of comparative experiments between GSplit 
LBI-based classifier and other classifiers on ADNI dataset and our in-house dataset are shown in this table. 


